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Correlations in the scattering cross section of regular systems
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Abstract. Recently, several authors recognized and discussed the fact that regular closed quantum
systems, i.e., systems which do not show correlations in their level spectrum, are nevertheless likely
to exhibit correlations in the scattering cross section if they are coupled with sufficient strength to
decay channels.

In this paper a new averaging method is developed, especially designed to de&t with
matrices constructed on the basis of Hamiltonians with uncorrelated eigenvalues. The method
is applied to the correlation function of ttfematrix in the one-channel case. It leads to a two-
dimensional integral representation of the correlation function which is accessible to an asymptotic
series expansion.

Depending on the statistical properties of the coupling matrix elements a ‘correlation hole’
appears in the real part of the correlation function. It becomes fully developed in the strong
coupling limit, but in some cases already appears before the coupling strength has reached the
point of maximal transmission (critical point).

1. Introduction

Many quantum experiments can be viewed as the opening of an originally closed system due to
a measurement process. The formerly discrete spectrum then becomes a continuous one, and
the eigenstates turn into resonances. A simple example would be a microwave billiard [1-3].
Due to the equivalence with a two-dimensional quantum billiard, such a system may be used
to study fundamental questions concerning transport phenomena in mesoscopic systems [4,5].

In order to analyse the eigenstates of a microwave billiard experimentally, an antenna
(usually a small lead) is placed inside. Via this antenna a microwave is injected, and its
reflection coefficient is measured and recorded as a function of the energy (frequency). It
gives the scattering cross section [6, 7] for this one-channel scattering system (the number of
channels is given by the number of antennas).

Depending on the shape of the billiard the classical motion can be chaotic or integrable [8];
usually integrable and chaotic motion coexist in distinct areas of the phase space. In general
the type of classical motion is reflected in the correlation properties of the level spectrum
of the corresponding quantum system. Integrable systems typically show no correlations in
the spectrum (Poissonian spectrum), whereas chaotic systems typically show the statistical
properties of the so-called Gaussian ensembles [9].

Naturally, the question arises, of how the statistical properties of the level spectrum are
transferred to the scattering cross section. The transfer is governed by the coupling mechanism
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between the discrete eigenstates and the decay channels. Aslong as the coupling is weak, first-
order perturbation theory may be used. In this approximation the eigenvalues get an additional
width and turn into resonances without changing their positions. All the correlations occurring

in the scattering cross section, originate from the level spectrum. For the non-perturbative
regime this is no longer true and more powerful methods for the calculation of correlations are
needed and have been developed [7,10-13]. However, the analytical results obtained there,
mostly apply to Gaussian ensembles only.

This paper considers Poissonian ensembles, i.e., ensembles of systems with uncorrelated
levels. This means that there are no correlations to be transferred to the scattering cross section.
Nethertheless, numerical investigations have shown that correlations may show up [6,13-15].
Insuch a case, the strong coupling not only transfers, but produces, correlations. The averaging
method for Poissonian ensembles developed in this paper allows one to trace this process
analytically. It leads to a two-dimensional integral representation of the correlation function
of the S-matrix. The corresponding expression is then expanded in an asymptotic series. This
gives a clue for the detection of correlations possibly present in the scattering cross section.

This paper is organised as follows. In section 2 the scattering system and the Poissonian
scattering ensemble are defined. In section 3 the aveSamgatrix and related quantities are
introduced. The nomenclature follows the optical model developed to describe compound-
nuclear reactions [16]. Section 4 gives an outline of the new ensemble-averaging method.
In section 5 the method is used to calculate the correlation function of-imatrix for a
Poissonian ensemble. The asymptotic series expansion of the correlation function is derived
in section 6. In section 7, a particular case is investigated, where the coupling to the continuum
produces very strong correlations. Section 8 consists of a summary.

2. Scattering ensemble

The starting point for constructing the scattering ensembile is the definition Sfrerix in
terms of finite-dimensional matricé# andV:

1
_1_iyt
S(E)=1-iVI———V (1)

i
H:HO—EVVT. 2)

Hyis arealN x N matrix, describing the closed quantum systéfis a realN x K matrix,
coupling each of the eigenstatesif to each of thek decay channels. The rows &f are
called channel vectors. They spai edimensional subspace through which the wavefunction
of the system decayd is called the effective Hamiltonian. Its complex eigenvalues are the
poles of theS-matrix and give the positions and widths of the resonances [16].

One way to arrive at such a representation of Shaatrix is the Feshbach-projection
formalism [17,18], developed in order to describe compound-nuclear reactions. A completely
different class of systems for whicf+matrices of form (1) can be derived are microwave
billiards with leads [6].

The S-matrix can also be expressed in the so-calkedhatrix representation [16]:

_1-iK(E)

S = k) ©
1,01

K =5V )

As the K -matrix is hermitian, (3) explicitly shows the unitarity of ti§ematrix.
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2.1. Definition of the random matricéd% and V

TheS-matrix (1) is constructed with only a finite number of real parameters, the matrix elements
of HyandV. The construction of the scattering ensemble is therefore accomplished by defining
Hy andV as random matrices. Dealing with Poissonian systems it is most convenient to work
in the eigenbasis affy so that the number of random variables is further reduced to the set of

uncorrelated eigenvalues #&f. Their distribution functiorp (¢) is normalized

/p(s) de=1 )

and equal to the level density, divided by This means that the local mean level distance
d(e), defined by the inverse level density, is of the ordeNof:

d(e) = . 6
Np(e) ©)

Concerning the coupling matri, it is desirable to allow different coupling strengths for
the various channels. This is done by introducing additional paramgters , nx and a new
matrix v such that

Via = V/MaVja- ()

The matrix elements;, are assumed to be independent random variables with the distribution
function p(v), a symmetric function with the following normalization properties:

/p(v) dv=1 /vzp(v)dv =N"1 (8)

3. AverageS-matrix and related quantities

Here, the much simpler spectral averages (averaging over many resonances in a small energy
interval) are used. The me&nmatrix gives:
1—i(K(E") . .
(S(E)) = TFHK(ED) E*=E+i§ 9
with an infinitesimals. In order to prove (9), one solves (3) for thé-matrix. The
resulting expression is an analytic function of wnatrix. As for any such functiotf (S),
(f(S)) = f(S)) holds [10], this is also true for th& -matrix.

In order to also apply (9) to ensemble averages, one has to assume that ensemble and
spectral averages are equivalent (‘ergodicity hypothesis’ [19]). For the formulae presented in
this section, ‘ergodicity’ can be proven explicitly for many different scattering ensembles. For
Poissonian ensembles, this is done in [20] applying the method presented in section 4.

AveragekK -matrix. In the eigenbasis aoffy each element of th& -matrix reads:

N

1 ViaVip
Kap(EH = = 3 2delib 10
ab(E") nghﬂ (10)

As the different terms in the sum are all independent, the averaging can be performed easily.
Cauchy’s theorem [21] leads to

<mww=m%ﬁfm§%_mwﬁ (11)
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The non-diagonal matrix elements of the aver&genatrix vanish. Assuming a symmetrical
level density the mea -matrix in the centre of the spectrum becomes purely imaginary,
because there, the principal-value integral vanishes:

(Kaa(0%) = —i%namm = —ik,. (12)

The second equality defines the coupling parametgrsthe appropriate dimensionless
parameters needed to measure the coupling strength of the system to the various channels.
Inserting (12) into (9) the measrmatrix in the centre of the spectrum simplifies to:
1—«,

<Saa(0)> = 1+r,

(13)

Transmission coefficients.For a nuclear reaction the transmission coefficient for chamnel
describes the probability that the projectile from channgéts trapped by the target nucleus

and suffers a slow quasi-statistical scattering under formation of a compound nucleus [16].
In the simple picture used here, the only alternative process is shape elastic scattering, are
described by the averagematrix. Therefore:

2 4y,

To =1—(S4,(0)° = TR
This formula shows that for small values af, the transmissior¥, is proportional to the
coupling strength,, whereas for large values it is proportional to its inversé. The point
at which the transmission becomes maximak= 1 is referred to as the ‘critical point’ [20].
It is equal or at least closely related to the ‘critical point’ defined in connection with the
‘trapping effect’ [15, 22—-25]. For each channelone broad resonance separates from all
others in that moment, when its coupling parameteexceeds the critical point. The broad
resonance separates from all others collecting more and more of the available width, and finally
it dominates the cross section globally. In doing so it gets absorbed into the shape elastic part
of the cross section and disappears from its fluctuating part, for which the natural scale is the
mean level distance.

In all that follows only the one-channel case will be considered. Thetmatrix and
the K -matrix are simple meromorphic functions of the energy and there is only one parameter
« for the coupling strength and only one transmission coefficent

(14)

4. Averaging method for products of S-matrices

Here the new method is presented, which allows one to average produztaatfices over

a Poissonian ensemble as defined in section 2. The method is based on represesting the
matrix as linearly depending on an exponential of Kxenatrix, which should be expressed

in the eigenbasis aofly (10). As theK-matrix is a sum of statistically independent terms, the
integration over the ensemble factorizes accordingly:

* H .
B = / dr e 2(r +9,)e K2 = [e K2, (15)
0

L, is alinear functional. The existence of the ensemble ave(ﬂxéfé’(/z) is presupposed, one
can do the averaging first and then apbly e "’K/2 factorizes in a product d¥ exponentials
with independent integration variablesandv;, and so does the ensemble average:

2

oY
<S(E)> = Lr<Z>gv Z= exp[_mTv Er_ 8:| . (16)
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One is left with an average over only two random variabdesndv, which represent a diagonal
element of Hp or a normalized coupling matrix element, respectively. Their distribution
functions are denoted hy(e) and p(v) (cf section 2).

Analogously the average of a product®matrices (one being complex conjugated) gives:

. N _ inv? r2 52
(S(E)S*(E")) = L, Ly(Z") z —exp[ 2 (E_E E,_g)]. (17)
This is the central equation for the calculation of the correlation function. The formary 2
dimensional integral is reduced to a two-dimensional one, which is then taken to the power of
N.

In a similar way, any finite number &f-matrices can be considered. One may always
profit from the reduction of integration variables, although the remaining integrals become
increasingly complicated. However, if none of tBematrices in the product is complex
conjugated, then the average over the product is equal to the product of the individually
averageds-matrices and therefore need not be discussed here. The reason lies in the analytic
properties of theS-matrix (cf the discussion below (9)).

Being interested in the case of a large number of resonavce®s consider the ensemble
average a®v — oo. In section 5, it will be shown that the expansion(@f ). in powers of
N~!leads to

(Z7)e=1—cy()NL+O(NT?). (18)
The relationf (x) = O(x*) is always used in combination with a limit — xo. Then, it
signifies that there exists an interdd aroundx, of finite length, and a constanat < oo such
thatVx € Up : | f(x)| < AxF.

Averaging (18) over the remaining random variablérepresenting a coupling matrix
element), it follows that in the limilv — oo, (Z7)" is equal to exp—{(co),). Summarizing,
one gets the following equation for the average of a product ofStwatrices:

(S(E)S™(E")) = L, Ly exp(—({cq )v) o) = lIm N(1—(Z7)e). 19)

So, the major task consists in calculatiggv).

5. S-matrix correlations

In this section the correlation function of ttematrix will be calculated. It is defined as
follows:

C[S](@) = (S(dow/2)S* (—dow/2)) — [{S(0)) . (20)
Usually [11, 20, 30] the correlation function is defined to be the complex conjugate of (20).
The advantage of the definition here, is a possitive imaginary patt f§](w), which allows
one to plot real and imaginary parts in a single diagram (cf figures 2=4))S](w) measures
the correlations between the values of t§+matrix elements taken at energies at a distance of
wdp in the centre of the spectrurdy = d(0), whered (¢) is the mean level distance defined in
(6). C~[S](w) is constructed in such a way, that its argumens of the order of one. Being
interested in the limitv— oo, one can neglect the shiftsdyw/2 in the arguments of the
meanS-matrices and replages(0)) by (12). As described in section 4 the representation (17)
is used for the average of the productsematrices. Altogether this leads to:

_ . . Y 1—«)?
Csl@ = L. fim (29, - (175) @)

_ inv? r? 52
z _eXp[ 4 (doa)/Z—s - —dow/z—eﬂ‘ (22)
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Figure 1. u(x), equation (27) withr = 0.8.

In the following it is assumed that the level density is constant. This is justified because the
level density varies on a scale whichAstimes larger than the level distance, which is the
scale ofC~[S](w).

p(e) = — d=—. (23)

111 le] < a 2a
2a | O elsewhere N

It is convenient to start with the integration over the level density. After a change of the
integration variable = dwx /2 one has

w [N tx+1
Z ) = — dx exp| i 24
=g [ (ir557) (24)
where the following notations were used:
- 2
p =20(r?+5%) o= 2;—&) K= T[Z; (K)y = K (25)
r2 — 52 2rs 2 2
T 12452 T 22 vrot=1 (26)

Note, that the integral in (24) is invariant under changing the sign afherefore, only
positivet are considered, and at the end of the calculatioiisreplaced byzr|. Now, choose
thex-dependent part of the exponent as the new integration variable:
x+1
x2 -1
This function is plotted for the value = 0.8 in figure 1. It has two poles at1l and two

maxima where it reaches the valugsandu,. Therefore, the range of the integral has to be
split into five parts, in each of whicia(x) is strictly monotonous:

XEu) = % (t:l:\/12+4u(u+1)>. (28)

(27)

u(x) =
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In figure 1 the finite limits of the image-intervals are marked with arrows. They have the
following values:
Ui = —14 (1:1: N f2) e = sENT 9T oy (29)

/2 2 +/—= N2 — 2 N :
The correct sign in each integral can be found by checking the asymptotic behavioti:of
at the limits. Note, that the integral twice runs over the intervalso, u;) and (u+, 00).
Finally we get

B T A LT T

2+ 2y

_ 31
£00) u\Jt2+ du(u +1) (31)
r 1 2+ 1u
__ Y L= /2 . cTqe
.f(u) - 2],{2 + 2[,{2 T + 4“(“ + 1) -52 T 4u(u T 1) N (32)

Next, according to the outline in section &), should be cast into the forrZz ), =
1—cyN~1+O(N~2). Due to the pre-factor, the integrals within the curly brackets should
amount to a term ® /w, a constant term, and further negligible terms of the ordey of.

Consider the integral containing the functigu) in its integrand. Due to its boundaries
of O(N 1) and due tof being of Q1) within these boundaries, it can be entirely neglected.
g(u) contained in the integrand of the remaining integrals has a pale=ad. The pole makes
the value of the integral diverge linearly wiffi. In order to separate the divergent term, we
introduce the function

h(u) = —tSgn(u — uy)u 2. (33)

Then, whileh(u)€?* can be integrated analytically,(u) = g(u) — h(u) has no more pole
atu = 0, so that the integration intervals,, u_) and (u+, o0) can be combined into one.

The sgn-function in (33) is used in order to haveim g(u) = h(u). It leads to simpler
expressions in the following evaluation of the remaining integrals.

—/ duu=2€eP* = —pE,(px) (34)

The first integral can be integrated analytically. It involves the exponential intégta) as
defined in (62):
00 ) eipx
Ex(—ipx) = —/ du u=?er" = — — - i pE1(—ipx). (35)
Inserting the boundaries and expanding the result in powers,obur main objective is
achieved. The linear term itV together with the pre-factor gives one, and the remaining
terms, together with the second integral of (34) give an expressiay fior closed form:

(Z7)Y =e o (36)

lim
N—o0

U1 d 2
g (v) = %[n + Ex(pur) — Ex(puz)] + ‘”—;{ / u—Z(l + %>

0 VT2+duu+1)
© du T+2u/t )} -
+ — 1 ) { P, 37
/uz ’42< VT2+du(u+1) (37)

The further evaluation of the integral is moved to appendix B. The expressiof (@4) found

there reads:
3 K 21252 o 1 (ldxv/1—2x2
cg (V) = E|r2 — 52+ rz—ﬁLszAx(o)xe*'Pﬂ*”)/z A(o) = ;/ —— . (38)

1 l—o0x
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The modulugr? — 52| assures the invariance ¢Z~)" with respect to the transformation
T — —1 mentioned in the beginning. The cusp it creates is compensated by the integral in
the last term, so thaf; (v) as a function of ands has a continuous derivative everywhere.

Application of the functionals,, L;. Viaintegration by parts one can remove the differential
operators, contained in the functionals. For any funggion with lim,_, ., g(r) exp(—r?/2) =
0, it holds

Lg=2 / ” dr re " 2g(r) — g(0). (39)
0

The combination ofL, and L; acting on a two-dimensional functiog(r, s), with the
corresponding properties as above, can be treated accordingly. With the further assumption
thatg(r, s) = g(s, r) one finds

L,L;g =g(0,0) — 4/ dr re_rz/zg(r, 0)+4Lg

~ o (40)

Lg = f dr ds rse " 26 (r, 5).
0

In order to calculate the correlation function (21) we set

lim (Z7)N = exp(—(cg)v) (41)

N—o00 ’

as it is given in (38). This expression is indeed invariant with respect to exchanging the
variablesr < s, so that (40) holds.g(r, 0) = exp(—«r?/2) independent ob and can be

integrated giving1 +«)~1. Subtracting the squared messmatrix (12) for the correlation
function one gets:

g(r,s) =

C[Slw)=T+4 (ng - %) (42)
1
=4<,cg— (1+K)2> (43)

whereT = 4« /(1 + «)? is the transmission coefficient. In appendix C two alternative
representations for the integrab are derived: (78) and (85).

1 [} -
Lg = f dr / dr t expl—t — kt(t + 0% A, (o) (ye "7 1779 ], (44)
0 0

2 rl oo uy )
Lg = (n_a)) / dr / duuexp| —ru{l— imc’y/ d—'oe_'p\]l(op) (45)
K 0 0 o P y

with the additional parameteks= mw/k" andx’ = k /(1 +«).

5.1. General properties of the correlation function

For the Gaussian ensembles, as considered in [11], the correlation function depends only on the
transmission coefficients (14). This implies its invariance under the transformatien 2.
In contrast, the correlation function of a Poissonian ensemble does not possess this symmetry,
as can be seen from the formulae (44) and (45)for Instead of7, the relevant parameter
is k’, which as a function ok increases monotonously from zero to one. The graph of the
correlation function changes accordingly, generally showing no similarity between the weak
and the strong coupling limit.

The limit values of the correlation function at (@)~ 0 and (bJ» — oo are independent
of the distribution of the coupling matrix elements. They are calculated in the following.
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(a) Forw — Othe function exp—it%(l—ax)} in (44) becomes infinitely rapidly oscillating.
Performing the integration wittd, (o) before the averaging over the coupling matrix
elements one sees that the integration of the oscillating term gives zero. Therefore, one is
left with

1 [} 1
lim =/ d dr e« = _—_ 46
o) /o i /o 1+xk (46)
Then (42) shows that in accordance with (14):
lim C7[S)) =T. (47)

(b) Forw — oo the same exponential function as in case (a) gives one. The intégi@)
then gives:

—x2 1
A, (o) = /dx T—or — 142 (48)

and one is left with

1 oo 02
lim Lg(w) = f dr / dttexp[—t — Kt (r + )}
—>00 0 0 1+7

1 [ee)
2/ dr / drrer@m — L (49)
0 0 (1+k)?

Then (43) shows that
lim C7[S](w) =0. (50)

6. Asymptotic expansion of the correlation function

Using (45) as a starting poinfg is expanded in an asymptotic series in the parameter co

[A =rmw/K', k" = k/(1 +k)]. It supplies a good approximation when eitleis large orx

is small. Note that even for infinite, «’ stays finite (approaching one) so that the asymptotic
series can still be used

2 1 (o]
Lg = (@) / dr f du ue ™
K 0 0

] , uy dp .
D) = u<1— oK y/ —€ 'le(ap)> .
o P y

The averaging over the coupling matrix elements in the second line is changed into an averaging
over the random variablg, which represents the normalized square of a coupling matrix
element. The derivative of the functidn(z) does not vanish, so a unique inverse of it always
exists. The integral ovet, therefore, has the only critical point = 0. Using® as the
new integration variable and performing repeated partial integrations where the exponential
function is integrated and the remaining part differentiated, results in an asymptotic series for
theu-integral [27]:

N2 1 ﬂw(u)oo 1 1 di” u
ﬁgN(T)/o dre ZW[@(M)@} (@/(u)) 'o

2 1 1 d n u
( ) Z)\Mlsn(O) sp (1) :/0 dr |:d>’(u) £i| W (52)

n=0

(51)
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In principle any number of coefficients(0) can be calculated in a straightforward manner.
But as the complexity of the corresponding expressions rapidly increases, only the first four
are explicitly given. They suffice to describe the lowest-order behaviour of the correlation
functionC~[S](w) asw — oo.

s0(0)=0 (53)
5s1000=1 (54)
52(0) = 2i’(y?) (55)
53(0) = 4'[(°) — 2" (y%)?]. (56)
Inserting the first two coefficients explicitly, one gets
00 r \n—1
O~ g 2 (5,) #O )

7. Example: constant coupling matrix elements

In this section one example of a Poissonian scattering ensemble is considered. The elements
of its coupling matrix (7) are all fixed t¢/n/N. Only recently have systems with constant
coupling matrix elements been investigated theoretically [13,28]. A physical system with this
property is the rectangular microwave billiard with an antenna placed in its centre, where all
eigenfunctions have either zero or maximal absolute values [20, 29].

Before presenting the results, some concepts will be shortly introduced in the following
paragraphs, needed for the discussion below. A detailed description of them can be found
in [20] and will also be published in a forthcoming paper.

Self- and pole-correlations. Starting from (1) and using the eigenbasis Bf one can
decompose th§-matrix into a sum of resonance terms. Then, the product ofSimtatrices
(andtherefore the correlation function itself) can be splitinto two parts: a single sum of products
of resonance terms with equal indices and a double sum of products of resonance terms with
distinct indices. The average of the first part, will be called ‘self-correlations’ whereas the
average of the second ‘pole-correlations’. Only the pole-correlation term is sensitive to possible
correlations between different resonances. Therefore, one should try to separate it from the
self-correlation term.

Rescaled Breit—Wigner approximationFor sufficiently weak coupling, one can apply first-
order perturbation theory fov in (2). Then, the positions and widths of the resonances
are directly given by the diagonal matrix elementsHyf and V VT, In this approximation

the ensemble averaging can be easily done. The self-correlation term depends only on the
distribution of the coupling matrix elements, whereas the pole-correlation term additionally
depends on the correlations in the eigenvalue&lgf consequently, the latter vanishes for
Poissonian ensembles.

But, even for moderate coupling strengthks< 0.1), a phenomenological rescaling is
necessary if a good approximation of the correlation function is required. The self- and pole-
correlation terms, obtained in this way, can be identified with analogous results from higher-
order perturbative calculations [30]. For the Poissonian ensemble (only self-correlations), the
rescaled Breit—Wigner approximation of the correlation function is:

_ 2inw
T

2
C[S](w) = T<y—> : (58)
Y y
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Note that here the complex conjugate of the usual definition is used (cf the discussion below
(20)). The random variable represents the normalized square of a coupling matrix element.
In the case of constant coupling matrix elemenmts; 1, and the correlation function becomes
a Lorentzian with the width:
I'c 7T
d 27
which is in perfect agreement with the theory of Ericson fluctuations [31, 32], wihelie
called ‘correlation length’.

(59)

Correlation hole. Here, the ‘correlation hole’ serves as a means to detect pole-correlations
in the correlation function (in this sense it is used in connection with the Fourier transform of
correlation functions [8]). Itis defined as a minimum in the real part of the correlation function.
Note however, that the appearance of a correlation hole is a sufficient (but not a necessary)
condition for the existence of pole-correlations. The reason is, that the self-correlation term
alone is a strictly decreasing function okOw < oo for any coupling strength [20].

In the following the correlation function is calculated and discussed for three different
coupling strengths. Figure 2 showWs [S](w) for the case of small but still so strong coupling,
so that the beginning of the break-down of the rescaled Breit—Wigner approximation can be
seen. Figure 3 shows the correlation function in the strong coupling case, where the correlation
hole has fully developed. Finally, figure 4 shows the case where the highest-order coefficient
s3(0), (56), of the asymptotic expansion for the real part of the correlation function just vanishes.

0.6
0.5
0.4
~
3
% 03
|
QO

0.2

0.1

Figure 2. C~[S]in the case of constant coupling matrix elements; 0.2. Comparison with the
asymptotic expansion (57) and the rescaled Breit—Wigner approximation (58). Real (diamonds) and
imaginary (crosses) parts of the exact correlation function using (44). In the main plot, the real (full
curve) and imaginary (broken curve) parts of the rescaled Breit—Wigner approximation are shown.
In the inset, the leading terms (= 2, 3) of the real (full curve) and imaginary (broken curve)
parts of the asymptotic expansion; the dotted curve gives the real part of the rescaled Breit—-Wigner
approximation.
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Figure 3. C~[S]in the case of constant coupling matrix elements; 10. Full curve in the main

plot and diamonds in the inset: real part of the exact correlation function using (44); broken curve
in the main plot and crosses in the inset: corresponding imaginary part. Full curve in the inset: real
part @ = 3) of the asymptotic expansion (57); broken curve in the inset: corresponding imaginary
part @ = 2).

In figure 2, C[S](w) is shown fork = 0.2. The coupling strength chosen is just
strong enough, so that the exact correlation function starts to differ significantly from the
rescaled Breit—-Wigner approximation (58), which simply gives the real and imaginary part of
a Lorentzian with the widtt'c/d as given in (59). The deviation from the Lorentzian signals
the beginning of a re-organization process. The resonance poles start to interfere with each
other [24], ‘trying’ to stay orthogonal to each other and at the same time try to align with the
channel vector (finally, this will result in a second-order phase transition as discussed in [25]).

For smallw the difference between the exact and the approximate correlation function is
strongest in the imaginary part 6f [S](w) as can be seen in the main plot of figure 2. On the
other hand, for large, the difference is strongest in the real part. As demonstrated in the inset
of figure 2, for ImC~[S](w) the rescaled Breit-Wigner curve perfectly meets the exact one,
whereas for R€~[S](w) both curves already differ in the lowest-order expansion coefficient.

Note, that the asymptotic expansion in lowest order is already quite accurate, starting from
w~1.

In figure 3 the case of strong couplirg= 10 is shown. All (except one) resonance poles
are again lying close to the real axis and would, with increasing coupling strength, further
approach it. In principle, again one has well separated Lorentzian shaped resonances, so
that the rescaled Breit—Wigner approximation could be applied. However, this is not feasible
because the closed system to which the effective Hamiltohigiprojected on a subspace
perpendicular to the channel vector) converges is different fiymand generally has very
different statistical properties. Namely, it exhibits strong pole-correlations.

For largew there is still a good agreement between the exact and the asymptotic result,
although starting from a somewhat larger value- 3 as in the small coupling case. The
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Figure 4. C~[S]in the case of constant coupling matrix elements; 1. Full curve in the main
plot and diamonds in the inset: real part of the exact correlation function using (44); broken curve
in the main plot: corresponding imaginary part. Full curve in the inset: real patt §) of the

asymptotic expansion (57).

appearance of a correlation hole does not affect the validity of the asymptotic expansion; on
the contrary, the correlation hole can be deduced from the fact that the lowest-order expansion
coefficients3(0) is negative, because the real part of the correlation function then has to
approach the-axis from below, from which the existence of a minimum follows. As discussed
above this correlation hole proves the existence of pole-correlations.

The correlation hole depicted in figure 3 is well pronounced, and in so far it fits to the
observations made in [6,13—-15]. There, it was found that the correlations betweSemtktex
poles increase with the coupling strength until settlement in the strong coupling limit.

From (56) it is found, that a correlation hole is present as soon asl (for constant
coupling matrix elements) and as> 5 (for Gaussian distributed coupling matrix elements).

In the latter case is five times larger, suggesting a less pronounced correlation hole in the
strong coupling limit.

The relation (56) furthermore shows, that distributions of coupling matrix elements exist,
for which the expansion coefficient(0) never becomes negative. This would be an even
stronger objection against the formation of a correlation hole. A limiting case, where no
correlations are produced at all is considered in [13, 20].

In figure 4 the coupling strength is chosen, such that the lowest-order coeffigi@nof
the asymptotic expansion of the real part of the correlation function just vanishes. For the case
of constant coupling matrix elements this point is identical to the critical point of maximal
transmission. Then, the real part of the correlation function is of andér governed by the

coefficientss(0):
55(0) = 4’ (—4 + 55¢' — 144> + 96¢"%) (60)
which gives

s5(0) = —1 (61)
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at the critical pointc = 1. This surprising result proves the existence of a correlation hole
already at the critical point (and due to continuity, also in a small neighbourhood around it).
As one can see in the inset of figure 4, the behaviour of R&](w) at largew is indeed
correctly described by the asymptotic expansion, using (61). However, the correlation hole is
very small.

8. Summary

In this paper a non-perturbative method for dealing with Poissonian scattering ensembles has
been developed. It allows one to average analytically over producfsnoétrices. This

is by itself an important achievement, as until now only a few scattering ensembles could
be treated analytically; amongst them the scattering ensembles based on Gaussian random
Hamiltonians. In contrast to the Gaussian ensembles, the Poissonian ensembles should be
used for the statistical description of generically integrable systems.

The comparison of the correlation function for the two types of ensembles, clarifies the role
played by the level-correlations for the correlation properties of the scattering cross section.
For instance, it turns out that the level-correlations are irresponsible for the emergence of
Ericson fluctuations which are solely produced by the self-correlation term. This is discussed
more extensively in [20].

One very interesting feature of the correlation function is a ‘correlation hole’ which may
occur, when the coupling to the decay channels is sufficiently strong. It proves correlations
between different resonances (pole-correlations). In this way, pole-correlations were found
in Poissonian scattering systems, which had been produced by the coupling to the decay
channels. Itwas further shown that they increase with the coupling strength and finally saturate.
These findings confirm earlier numerical investigations of the correlations betweeirix
poles [14,15]. In the strong coupling limit, one arrives at a new closed system (of dimension
N — 1) with totally different correlation properties. This behaviour should be contrasted to
the GOE case, where the correlation function is invariant under the transformatior —*.

In the weak as well as in the strong coupling limit, the correlation function reflects the same
level-correlations of the GOE-type, whereas, with increasing transmission, the correlations get
washed out.

In the case of constant coupling matrix elements, it could be demonstrated, that pole
correlations appear even before the critical point is reached. Even though the correlation
hole was found to be extremely small, this is an important result in view of more principle
questions. First of all one could have thought of finding some signature of the critical point
in the correlation function, which is apparently not the case. Second, it is doubtful whether
one can find physical systems with an external parameter to drive them across the critical
point. Then, one could have argued, that correlations can be induced only when the coupling
is passing its physical limits (the critical point), so that the statement ‘the coupling produces
correlations’ was irrelevant.

In order to test the results presented in this paper, on a real physical system, one could
follow two lines: (a) one could perform an appropriate experiment, similar to [2], with
a superconducting rectangular microwave billiard, recording the reflection spectrum and
analysing the correlations within; (b) alternatively one could conduct a humerical analysis.
Then a two-dimensional rectangular microwave billiard coupled to a coplanar waveguide
would probably be more appropriate. Studies on such a system (although at first with different
interests) have recently started [33].
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Appendix A. A special kind of the exponential integral

For the integration of the first integrand of (34) an anti-derivative d%"* is needed, which
should be analytic at infinity. This is accomplished by the following definition

Es(z) = f du% = eI? +iEq1(—iz) larg(—iz)| < 7. (62)

The integration path may not cross the negative real axis including the origjnis the
exponential integral according to [26]. For asymptotically small real argumeiatse gets

Eo() = T +i[1 — y ~ In(~ix)] + O(x)

= % +i [1 —y—In|x|+ igsgr(x)} +0(x). (63)

y is Euler’s constant.

Appendix B. Simplification of ¢, (v)

Both integrals in (37) will be transformed in such a way that each of the radicands will become
x? — 1. So in the first integral the transformation reads= (ox + 1)/2 and in the second
integral: u = (ox — 1)/2. Due to the transformations both integration intervals are mapped
onto the interval:(—1, 1). A further transformationr — —x in the second integral allows
one to combine both integrals into a single one:

5 () = %[n + Ex(puy) — Ex(pup)] + F(p. 7)

21 _ =
F(p,f) —woe ip/2 l-x—-o ,iﬁx_l_f X l1—x+o0 'ﬂx}

TV X
/ \/——xz { (ox + D2 (ox — 172
(64)

whereg = po/2. Discarding the exponentials, each of the two terms can be integrated as a
indefinite integral, using standard techniques [34]. Note that both terms in the curly brackets
differ only in the sign in front of the parameter Considering both cases as anti-derivatives
one gets

— (s o) 2 -1
[eimstin i)t e

whereg = s/r. With this result, one can integrate partiallyih and arrive at

2wo e ih dh
F _ —ip/2 _ 4 +iBA 66
P, ) 1+‘L’e {1+q l1-g¢g I8 } (66)

ood e|/3x efl,Bx (67)
A= x — .
/1 (x+Vx2—1—q x+Vx2—1+q>
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After the substitutiont = —x — +/x2 — 1 in the first integrand and = x + v/x2 — 1 in the
second, one can recombine the integrals into one:

I U= U gty
A=|:/_OO+/1 i|du2u(u—q)el . (68)

The integration intervals form a part of a closed path in the complex plane, consisting of the
interval (—oo, —1), the upper half unit circle from-1 to 1, the interva(l, co), and the upper

half circle fromoo to —oco. The integrand is analytic in the region enclosed by this path, and
the integral over the semicircle with ‘infinite’ radius gives zero. Therefore one gets

singef s /‘1 dx ePx o .
A= d = —_— = — (A1 +iA 69
/ p— & — 4 B 2q( 1+14z) (69)

s q—x  2sinf T ip ip
Al = /71 dx eﬁ m = O—ﬁ + O_—Zelp/z {El |:E(1+O')} - El I:?(l_a):l} (70)

1 . /1_ 2
Ar = / dx €~ ol
~1

l—ox

(71)

Inserting the results foA; (70), for F(p, t) (66) into the starting expression fof (v) (64)
one gets

- el e 20 [eP ef  ising
- = 2 +peiri2| ~ — — + +
Co =TwpT/2te l-0 1l+0 1+47t\1l+g 1—gq q

o 22 2] e fe0] -2 -0

2wo po i/
Aa. 72
“Tvr2g 2 (72)
Replacing the parameteys 7, o, andg by their definitions (25) and (26) as functions
depending om ands, it turns out, that the expressions in both square brackets vanish.

~ 2.2

- _k 2 2, - 2rs —ip(l-ox)/2

Cg = §|r —S |+KTS2.AX(O')G P (73)
1 [t 1— x2

Ao)== [ dx aiy (74)
T J_q l-o0x

Appendix C. Simplified expressions for the integralCg

First representation. In order to calculate the correlation functi6it[S](w) one needs the
integral Lg as it is given due to the relations (38), (40) and (41). Using the abbreviation
R? = r? + 52, and the parametees t, andk as defined in (25) and (26) one finds

%0 RZ .
Lg = // drdsrs exp[—7(l trlt|+ UzAx(U)('Ze_'p(l_”)/2>v):| - (79)
0

This expression can be simplified further by introducing spherical coordinatesRk cose,
s = Rsing. Then it holds:

r’+s2=R? o = 2cosp sing = sin 2 T = coS ¢ — Sinf ¢ = cos 2. (76)
Because's = R?0/2 andp = R?/(mww) the transition to the new coordinates is easily
accomplished. The integral operatbalone, now reads:

00 ) /2 00 b d
L= %/0 dR R%e % /2/0 de sin2p = %fo dtte”/o do sing (77)
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with @ = 2¢ andr = R?/2. Because(r, s) is symmetric with respect to the transformation
6 — 7 — 0, one can restrict the integration to the half of the original integration interval,
namely to(0, /2). There a further substitutioh = cosg is applied. Finallyk is replaced

by xky due to the relation (25)y is a random variable for the normalized square of a coupling
matrix element, which coincides in the weak coupling limit with the normalized width of the
resonances. We then get the first of the two representatiofig which are used in sections
5and 8:

1 [} -
Lg = / dr / dr r expl—t — kt(t + 02 A (o) (ye "7 d79) )], (78)
0 0

Second representation.A second representation 8§ can be found by rewriting the integral

. Ip(l ox)/2
A (o) Pd-on/2 - / dx v/1— x2 . (79)
—0oX
The latter part of the integrand can be expressed by the following indefinite integral:
e—ip(l—ﬂx)/2 i —ioo )
fp)=—— = _/ dp e—lp(l—nx)/Z. (80)
1-o0x 2/,

Inserting f (p) into (79) and exchanging the order of integrations leads to

i 1
A, (o) ' PA=o0/2 = 5 / dp e*'p/zg / ) dx v/1 — x2e79P¥/2, (81)
14 -

The x-integral is a representation of the Bessel function of the first kind, as can be realized
after the substitutiom = cos¢ and subsequent partial integration [26]

1 [t - 2i /2 - 2
= / dr /1 — x2eor/2 = 2L dé singeorsNe/2 — £ 3 (55 /2). (82)
T Ja Top J_zp2 op
Therefore, we finally have
) i —ioco d )
A, (o) ' PA=o0/2 — ! f —pe*'ﬂal(ap). (83)
p/2 P

As for p = 0, we haver? A, (o) = 1— 7 (cf (48)) one can split the integration path to get

—ioo ) —ioo p/2 )
ia/ d—pe_"’Jl(ap) = i0|:/ —/ }d—pe_'le(op)
p/2 P 0 0 P

r/2 )
=1-1)— ia/ d_,o 31 (op). (84)
0 o
Inserting this expression in (78) and using the substitutienxt/(;r w) finally gives
2 rl [} uy d )
Lg = (T[—w> / dr / duu exp[ - ku<1 - imc’y/ —'Oe'le(ap)> i| (85)
K 0 0 o P y

Here the additional parameters= 7rw/k’ andx’ = k /(1 +«) are introduced.

References

[1] Stockmann H -J and Stein J 1990ys. Rev. Let642215

[2] AltH, GrafH-D, Harney H L, Hofferbert R, Lengler H, Richter A, Schardt P and WeiddlemH A 1995Phys.
Reuv. Lett74

[3] So P, Anlage S M, Ott E and OertB N 1995Phys. Rev. Let74 2662



2332 T Gorin

(4]
(5]
(6]
[7]
(8]
El
(10]
(11]
(12]
(13]
[14]
[15]
[16]

[17]
(18]
[19]
(20]
[21]
(22]
(23]
[24]
(25]
(26]

(27]

(28]
(29]
(30]
(31]
(32]
(33]
(34]

Baranger H U, DiVincenzo D P, Jalalidt A and Stoe A D 1991Phys. RevB 4410637

Beenakke C W J1997Rev. Mod. Phy$9 731

Albeverio S, Haake F, Kurasov P, KIM andSeba P 1993. Math. Phys37 4888

Fyodoror Y V and Sommers H -J 1997. Math. Phys381918

Gutzwiller M C 1990Chaos in Classical and Quantum Mechanibiew York: Springer)

Mehta M L 1967Random Matrices and the Statistical Theory of Energy Lelgsv York: Academic)

Mello P A, Pereyra P and Seligmd H 1985Ann. Phys161254

Verbaarschbd J M, Weidennilller H A and ZirnbaueM R 1985Phys. Repl129367

Sokolor V V and Zelevinsk V G 1989Nucl. PhysA 504562

Stockmann H -J an&eba P 1998. Phys. A: Math. Ger81 3439

Dittes F-M, Rotter | and SelignmeT H 1991Phys. LettA 15814

Gorin T, Dittes F-M, Miller M, Rotter | and SeligmaT H 1997Phys. ReVE 56 2481

Mahaux C and Weidenifler H A 1969 Shell-Model Approach to Nuclear Reactioffsnsterdam: North-
Holland)

Feshbach H 1958nn. Phys., N5 357

Feshbach H 1962Ann. Phys., NY19 287

Haake F 199Nuantum Signatures of Cha(Berlin: Springer)

Gorin T 1998PhD ThesisTechnische Universit Dresden

Rudin W 1986Real and Complex Analys{Singapore: McGraw-Hill)

Kleinwachter P and Rotter | 198%hys. RevC 321742

Rotter | 1991Rep. Prog. Phys$4 635

Miller M, Dittes F-M, Iskra W and Rotter | 1998hys. RevE 525961

Jung C, Miller M and Rotter | 199&reprint mpi-pks/9804014

Abramowitz M and Stegul A 1964 Handbook of Mathematical FunctioMBS (Washington, DC: US Govt
Printing Office)

Bleistein N and HandelsmaR A 1975Asymptotic Expansions of Integrgldew York: Holt, Rinehart and
Winston)

Flores J, Herandez-Sald@a H, Leyvraz F and Seligmal H 1997J. Phys. A: Math. Ger81 1509

Seba P 1997 Private communication

Muller A and Harng H L 1987 Phys. RevC 351228

Ericson T and Mayer-Kuckuk T 1968nn. Rev. Nucl. Scl6 183

Brody T A, Flores J, French J B, Mello P A, Pandey A and \Y&S M1981Rev. Mod. Phys53 385

Persson E, Pichugin K, Rotter | ameba P 199@hys. Re\E 588001

Bronsten | N and Semendjaye K A 1987 Taschenbuch der Mathematkl B G Teubner (Leipzig)



