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Abstract. Recently, several authors recognized and discussed the fact that regular closed quantum
systems, i.e., systems which do not show correlations in their level spectrum, are nevertheless likely
to exhibit correlations in the scattering cross section if they are coupled with sufficient strength to
decay channels.

In this paper a new averaging method is developed, especially designed to deal withS-
matrices constructed on the basis of Hamiltonians with uncorrelated eigenvalues. The method
is applied to the correlation function of theS-matrix in the one-channel case. It leads to a two-
dimensional integral representation of the correlation function which is accessible to an asymptotic
series expansion.

Depending on the statistical properties of the coupling matrix elements a ‘correlation hole’
appears in the real part of the correlation function. It becomes fully developed in the strong
coupling limit, but in some cases already appears before the coupling strength has reached the
point of maximal transmission (critical point).

1. Introduction

Many quantum experiments can be viewed as the opening of an originally closed system due to
a measurement process. The formerly discrete spectrum then becomes a continuous one, and
the eigenstates turn into resonances. A simple example would be a microwave billiard [1–3].
Due to the equivalence with a two-dimensional quantum billiard, such a system may be used
to study fundamental questions concerning transport phenomena in mesoscopic systems [4,5].

In order to analyse the eigenstates of a microwave billiard experimentally, an antenna
(usually a small lead) is placed inside. Via this antenna a microwave is injected, and its
reflection coefficient is measured and recorded as a function of the energy (frequency). It
gives the scattering cross section [6, 7] for this one-channel scattering system (the number of
channels is given by the number of antennas).

Depending on the shape of the billiard the classical motion can be chaotic or integrable [8];
usually integrable and chaotic motion coexist in distinct areas of the phase space. In general
the type of classical motion is reflected in the correlation properties of the level spectrum
of the corresponding quantum system. Integrable systems typically show no correlations in
the spectrum (Poissonian spectrum), whereas chaotic systems typically show the statistical
properties of the so-called Gaussian ensembles [9].

Naturally, the question arises, of how the statistical properties of the level spectrum are
transferred to the scattering cross section. The transfer is governed by the coupling mechanism
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between the discrete eigenstates and the decay channels. As long as the coupling is weak, first-
order perturbation theory may be used. In this approximation the eigenvalues get an additional
width and turn into resonances without changing their positions. All the correlations occurring
in the scattering cross section, originate from the level spectrum. For the non-perturbative
regime this is no longer true and more powerful methods for the calculation of correlations are
needed and have been developed [7, 10–13]. However, the analytical results obtained there,
mostly apply to Gaussian ensembles only.

This paper considers Poissonian ensembles, i.e., ensembles of systems with uncorrelated
levels. This means that there are no correlations to be transferred to the scattering cross section.
Nethertheless, numerical investigations have shown that correlations may show up [6,13–15].
In such a case, the strong coupling not only transfers, but produces, correlations. The averaging
method for Poissonian ensembles developed in this paper allows one to trace this process
analytically. It leads to a two-dimensional integral representation of the correlation function
of theS-matrix. The corresponding expression is then expanded in an asymptotic series. This
gives a clue for the detection of correlations possibly present in the scattering cross section.

This paper is organised as follows. In section 2 the scattering system and the Poissonian
scattering ensemble are defined. In section 3 the averageS-matrix and related quantities are
introduced. The nomenclature follows the optical model developed to describe compound-
nuclear reactions [16]. Section 4 gives an outline of the new ensemble-averaging method.
In section 5 the method is used to calculate the correlation function of theS-matrix for a
Poissonian ensemble. The asymptotic series expansion of the correlation function is derived
in section 6. In section 7, a particular case is investigated, where the coupling to the continuum
produces very strong correlations. Section 8 consists of a summary.

2. Scattering ensemble

The starting point for constructing the scattering ensemble is the definition of theS-matrix in
terms of finite-dimensional matricesH0 andV :

S(E) = 1− iV † 1

E −H V (1)

H = H0 − i

2
VV †. (2)

H0 is a realN ×N matrix, describing the closed quantum system.V is a realN ×K matrix,
coupling each of the eigenstates ofH0 to each of theK decay channels. The rows ofV are
called channel vectors. They span aK-dimensional subspace through which the wavefunction
of the system decays.H is called the effective Hamiltonian. Its complex eigenvalues are the
poles of theS-matrix and give the positions and widths of the resonances [16].

One way to arrive at such a representation of theS-matrix is the Feshbach-projection
formalism [17,18], developed in order to describe compound-nuclear reactions. A completely
different class of systems for whichS-matrices of form (1) can be derived are microwave
billiards with leads [6].

TheS-matrix can also be expressed in the so-calledK-matrix representation [16]:

S(E) = 1− iK(E)

1 + iK(E)
(3)

K(E) = 1

2
V † 1

E −H0
V. (4)

As theK-matrix is hermitian, (3) explicitly shows the unitarity of theS-matrix.
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2.1. Definition of the random matricesH0 andV

TheS-matrix (1) is constructed with only a finite number of real parameters, the matrix elements
ofH0 andV . The construction of the scattering ensemble is therefore accomplished by defining
H0 andV as random matrices. Dealing with Poissonian systems it is most convenient to work
in the eigenbasis ofH0 so that the number of random variables is further reduced to the set of
uncorrelated eigenvalues ofH0. Their distribution functionρ(ε) is normalized∫

ρ(ε) dε = 1 (5)

and equal to the level density, divided byN . This means that the local mean level distance
d(ε), defined by the inverse level density, is of the order ofN−1:

d(ε) = 1

Nρ(ε)
. (6)

Concerning the coupling matrixV , it is desirable to allow different coupling strengths for
the various channels. This is done by introducing additional parametersη1, . . . , ηK and a new
matrixv such that

Vja = √ηavja. (7)

The matrix elementsvja are assumed to be independent random variables with the distribution
functionp(v), a symmetric function with the following normalization properties:∫

p(v) dv = 1
∫
v2p(v)dv = N−1. (8)

3. AverageS-matrix and related quantities

Here, the much simpler spectral averages (averaging over many resonances in a small energy
interval) are used. The meanS-matrix gives:

〈S(E)〉 = 1− i〈K(E+)〉
1 + i〈K(E+)〉 E+ = E + iδ (9)

with an infinitesimalδ. In order to prove (9), one solves (3) for theK-matrix. The
resulting expression is an analytic function of theS-matrix. As for any such functionf (S),
〈f (S)〉 = f (〈S〉) holds [10], this is also true for theK-matrix.

In order to also apply (9) to ensemble averages, one has to assume that ensemble and
spectral averages are equivalent (‘ergodicity hypothesis’ [19]). For the formulae presented in
this section, ‘ergodicity’ can be proven explicitly for many different scattering ensembles. For
Poissonian ensembles, this is done in [20] applying the method presented in section 4.

AverageK-matrix. In the eigenbasis ofH0 each element of theK-matrix reads:

Kab(E
+) = 1

2

N∑
j=1

VjaVjb

E+ − εj . (10)

As the different terms in the sum are all independent, the averaging can be performed easily.
Cauchy’s theorem [21] leads to

〈Kab(E+)〉 = δab ηa
2

[
P
∫

dε
ρ(ε)

E − ε − iπρ(E)

]
. (11)
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The non-diagonal matrix elements of the averageK-matrix vanish. Assuming a symmetrical
level density the meanK-matrix in the centre of the spectrum becomes purely imaginary,
because there, the principal-value integral vanishes:

〈Kaa(0+)〉 = −i
π

2
ηaρ(0) = −iκa. (12)

The second equality defines the coupling parametersκa, the appropriate dimensionless
parameters needed to measure the coupling strength of the system to the various channels.

Inserting (12) into (9) the meanS-matrix in the centre of the spectrum simplifies to:

〈Saa(0)〉 = 1− κa
1 +κa

. (13)

Transmission coefficients.For a nuclear reaction the transmission coefficient for channela

describes the probability that the projectile from channela gets trapped by the target nucleus
and suffers a slow quasi-statistical scattering under formation of a compound nucleus [16].
In the simple picture used here, the only alternative process is shape elastic scattering, are
described by the averageS-matrix. Therefore:

Ta = 1− 〈Saa(0)〉2 = 4κa
(1 +κa)2

. (14)

This formula shows that for small values ofκa, the transmissionTa is proportional to the
coupling strengthκa, whereas for large values it is proportional to its inverseκ−1

a . The point
at which the transmission becomes maximalκa = 1 is referred to as the ‘critical point’ [20].
It is equal or at least closely related to the ‘critical point’ defined in connection with the
‘trapping effect’ [15, 22–25]. For each channela one broad resonance separates from all
others in that moment, when its coupling parameterκa exceeds the critical point. The broad
resonance separates from all others collecting more and more of the available width, and finally
it dominates the cross section globally. In doing so it gets absorbed into the shape elastic part
of the cross section and disappears from its fluctuating part, for which the natural scale is the
mean level distance.

In all that follows only the one-channel case will be considered. Then theS-matrix and
theK-matrix are simple meromorphic functions of the energy and there is only one parameter
κ for the coupling strength and only one transmission coefficientT .

4. Averaging method for products ofS-matrices

Here the new method is presented, which allows one to average products ofS-matrices over
a Poissonian ensemble as defined in section 2. The method is based on representing theS-
matrix as linearly depending on an exponential of theK-matrix, which should be expressed
in the eigenbasis ofH0 (10). As theK-matrix is a sum of statistically independent terms, the
integration over the ensemble factorizes accordingly:

S(E) =
∫ ∞

0
dr e−r

2/2(r + ∂r)e
−ir2K/2 = Lre−ir2K/2. (15)

Lr is a linear functional. The existence of the ensemble average〈e−ir2K/2〉 is presupposed, one
can do the averaging first and then applyLr . e−ir2K/2 factorizes in a product ofN exponentials
with independent integration variablesεj andvj , and so does the ensemble average:

〈S(E)〉 = Lr〈Z〉Nε,v Z = exp

[
− iηv2

4

r2

E − ε
]
. (16)
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One is left with an average over only two random variables:ε andv, which represent a diagonal
element ofH0 or a normalized coupling matrix element, respectively. Their distribution
functions are denoted byρ(ε) andp(v) (cf section 2).

Analogously the average of a product ofS-matrices (one being complex conjugated) gives:

〈S(E)S∗(E′)〉 = LrLs〈Z−〉N Z− = exp

[
− iηv2

4

(
r2

E − ε −
s2

E′ − ε
)]
. (17)

This is the central equation for the calculation of the correlation function. The formerly 2N -
dimensional integral is reduced to a two-dimensional one, which is then taken to the power of
N .

In a similar way, any finite number ofS-matrices can be considered. One may always
profit from the reduction of integration variables, although the remaining integrals become
increasingly complicated. However, if none of theS-matrices in the product is complex
conjugated, then the average over the product is equal to the product of the individually
averagedS-matrices and therefore need not be discussed here. The reason lies in the analytic
properties of theS-matrix (cf the discussion below (9)).

Being interested in the case of a large number of resonancesN , we consider the ensemble
average asN → ∞. In section 5, it will be shown that the expansion of〈Z−〉ε in powers of
N−1 leads to

〈Z−〉ε = 1− c−0 (v)N−1 + O(N−2). (18)

The relationf (x) = O(xk) is always used in combination with a limitx → x0. Then, it
signifies that there exists an intervalU0 aroundx0, of finite length, and a constantA <∞ such
that∀x ∈ U0 : |f (x)| < Axk.

Averaging (18) over the remaining random variablev (representing a coupling matrix
element), it follows that in the limitN →∞, 〈Z−〉N is equal to exp(−〈c0〉v). Summarizing,
one gets the following equation for the average of a product of twoS-matrices:

〈S(E)S∗(E′)〉 = LrLs exp(−〈c−0 〉v) c−0 (v) = lim
N→∞

N(1− 〈Z−〉ε). (19)

So, the major task consists in calculatingc−0 (v).

5. S-matrix correlations

In this section the correlation function of theS-matrix will be calculated. It is defined as
follows:

C−[S](ω) = 〈S(d0ω/2)S
∗(−d0ω/2)〉 − |〈S(0)〉|2. (20)

Usually [11, 20, 30] the correlation function is defined to be the complex conjugate of (20).
The advantage of the definition here, is a possitive imaginary part ofC−[S](ω), which allows
one to plot real and imaginary parts in a single diagram (cf figures 2–4).C−[S](ω) measures
the correlations between the values of twoS-matrix elements taken at energies at a distance of
ωd0 in the centre of the spectrum.d0 = d(0), whered(ε) is the mean level distance defined in
(6). C−[S](ω) is constructed in such a way, that its argumentω is of the order of one. Being
interested in the limitN → ∞, one can neglect the shifts±d0ω/2 in the arguments of the
meanS-matrices and replace〈S(0)〉 by (12). As described in section 4 the representation (17)
is used for the average of the product ofS-matrices. Altogether this leads to:

C−[S](ω) = LrLs lim
N→∞
〈Z−〉Nε,v −

(
1− κ
1 +κ

)2

(21)

Z− = exp

[
iηv2

4

(
r2

d0ω/2− ε −
s2

−d0ω/2− ε
)]
. (22)
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Figure 1. u(x), equation (27) withτ = 0.8.

In the following it is assumed that the level density is constant. This is justified because the
level density varies on a scale which isN times larger than the level distance, which is the
scale ofC−[S](ω).

ρ(ε) = 1

2a

{
1 |ε| < a

0 elsewhere
d = 2a

N
. (23)

It is convenient to start with the integration over the level density. After a change of the
integration variableε = dωx/2 one has

〈Z−〉ε = ω

2N

∫ N/ω

−N/ω
dx exp

(
ip
τx + 1

x2 − 1

)
(24)

where the following notations were used:

p = 2α(r2 + s2) α = κ̃

2πω
κ̃ = πηv2

2d
〈κ̃〉v = κ (25)

τ = r2 − s2

r2 + s2
σ = 2rs

r2 + s2
τ 2 + σ 2 = 1. (26)

Note, that the integral in (24) is invariant under changing the sign ofτ . Therefore, only
positiveτ are considered, and at the end of the calculations,τ is replaced by|τ |. Now, choose
thex-dependent part of the exponent as the new integration variable:

u(x) = τx + 1

x2 − 1
. (27)

This function is plotted for the valueτ = 0.8 in figure 1. It has two poles at±1 and two
maxima where it reaches the valuesu1 andu2. Therefore, the range of the integral has to be
split into five parts, in each of whichu(x) is strictly monotonous:

X±(u) = 1

2u

(
τ ±

√
τ 2 + 4u(u + 1)

)
. (28)



Correlations in the scattering cross section of regular systems 2321

In figure 1 the finite limits of the image-intervals are marked with arrows. They have the
following values:

u1/2 = − 1
2

(
1±

√
1− τ 2

)
u+/− = ω 1±Nτ

N2 − ω2
= ±ωτ

N
+ O(N−2). (29)

The correct sign in each integral can be found by checking the asymptotic behaviour ofX±(u)
at the limits. Note, that the integral twice runs over the intervals(−∞, u1) and (u+,∞).
Finally we get

〈Z−〉ε = ω

2N

{[ ∫ u1

−∞
−
∫ u−

u2

−
∫ ∞
u+

]
du g(u) +

∫ u+

u−
du f (u)

}
eipu (30)

g(u) = − τ 2 + 2u

u2
√
τ 2 + 4u(u + 1)

(31)

f (u) = − τ

2u2
+

1

2u2

√
τ 2 + 4u(u + 1)− 2 + 1/u√

τ 2 + 4u(u + 1)
. (32)

Next, according to the outline in section 4,〈Z−〉ε should be cast into the form〈Z−〉ε =
1− c−0 N−1 + O(N−2). Due to the pre-factor, the integrals within the curly brackets should
amount to a term 2N/ω, a constant term, and further negligible terms of the order ofN−1.

Consider the integral containing the functionf (u) in its integrand. Due to its boundaries
of O(N−1) and due tof being of O(1) within these boundaries, it can be entirely neglected.
g(u) contained in the integrand of the remaining integrals has a pole atu = 0. The pole makes
the value of the integral diverge linearly withN . In order to separate the divergent term, we
introduce the function

h(u) = −τsgn(u− u1)u
−2. (33)

Then, whileh(u)eipu can be integrated analytically,g′(u) = g(u) − h(u) has no more pole
at u = 0, so that the integration intervals(u2, u−) and(u+,∞) can be combined into one.
The sgn-function in (33) is used in order to have limτ→1 g(u) = h(u). It leads to simpler
expressions in the following evaluation of the remaining integrals.

−
∫ ∞
x

du u−2 eipx = −pẼ2(px) (34)

The first integral can be integrated analytically. It involves the exponential integralẼ2(z) as
defined in (62):

E2(−ipx) = −
∫ ∞
x

du u−2eipu = −eipx

x
− ipE1(−ipx). (35)

Inserting the boundaries and expanding the result in powers ofN , our main objective is
achieved. The linear term inN together with the pre-factor gives one, and the remaining
terms, together with the second integral of (34) give an expression forc−0 in closed form:

lim
N→∞
〈Z−〉Nε = e−c

−
0 (v) (36)

c−0 (v) =
ωpτ

2
[π +E2(pu1)− E2(pu2)] +

ωτ

2

{∫ u1

−∞

du

u2

(
1 +

τ + 2u/τ√
τ 2 + 4u(u + 1)

)
+
∫ ∞
u2

du

u2

(
1− τ + 2u/τ√

τ 2 + 4u(u + 1)

)}
eipu. (37)

The further evaluation of the integral is moved to appendix B. The expression forc−0 (74) found
there reads:

c−0 (v) =
κ

2
|r2 − s2| + 2r2s2

r2 + s2
Ax(σ )κ̃e−ip(1−σx)/2 Ax(σ ) = 1

π

∫ 1

−1

dx
√

1− x2

1− σx . (38)
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The modulus|r2 − s2| assures the invariance of〈Z−〉N with respect to the transformation
τ → −τ mentioned in the beginning. The cusp it creates is compensated by the integral in
the last term, so thatc−0 (v) as a function ofr ands has a continuous derivative everywhere.

Application of the functionalsLr, Ls . Via integration by parts one can remove the differential
operators, contained in the functionals. For any functiong(r)with lim r→∞ g(r) exp(−r2/2) =
0, it holds

Lrg = 2
∫ ∞

0
dr re−r

2/2g(r)− g(0). (39)

The combination ofLr and Ls acting on a two-dimensional functiong(r, s), with the
corresponding properties as above, can be treated accordingly. With the further assumption
thatg(r, s) = g(s, r) one finds

LrLsg = g(0, 0)− 4
∫ ∞

0
dr re−r

2/2g(r, 0) + 4Lg

Lg =
∫ ∞

0
dr ds rse−(r

2+s2)/2g(r, s).

(40)

In order to calculate the correlation function (21) we set

g(r, s) = lim
N→∞
〈Z−〉Nε,v = exp(−〈c−0 〉v) (41)

as it is given in (38). This expression is indeed invariant with respect to exchanging the
variablesr ↔ s, so that (40) holds.g(r, 0) = exp(−κr2/2) independent ofv and can be
integrated giving(1 + κ)−1. Subtracting the squared meanS-matrix (12) for the correlation
function one gets:

C−[S](ω) = T + 4

(
Lg − 1

1 +κ

)
(42)

= 4

(
Lg − 1

(1 +κ)2

)
(43)

whereT = 4κ/(1 + κ)2 is the transmission coefficient. In appendix C two alternative
representations for the integralLg are derived: (78) and (85).

Lg =
∫ 1

0
dτ

∫ ∞
0

dt t exp[−t − κt (τ + σ 2Ax(σ )〈ye−it κy
πω
(1−σx)〉y)]. (44)

Lg =
(πω
κ

)2
∫ 1

0
dτ

∫ ∞
0

du uexp

[
− λu

〈
1− iσκ ′y

∫ uy

0

dρ

ρ
e−iρJ1(σρ)

〉
y

]
(45)

with the additional parametersλ = πω/κ ′ andκ ′ = κ/(1 +κ).

5.1. General properties of the correlation function

For the Gaussian ensembles, as considered in [11], the correlation function depends only on the
transmission coefficients (14). This implies its invariance under the transformationκ → κ−1.
In contrast, the correlation function of a Poissonian ensemble does not possess this symmetry,
as can be seen from the formulae (44) and (45) forLg. Instead ofT , the relevant parameter
is κ ′, which as a function ofκ increases monotonously from zero to one. The graph of the
correlation function changes accordingly, generally showing no similarity between the weak
and the strong coupling limit.

The limit values of the correlation function at (a)ω→ 0 and (b)ω→∞ are independent
of the distribution of the coupling matrix elements. They are calculated in the following.
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(a) Forω→ 0 the function exp{−it κ̃
πω
(1−σx)} in (44) becomes infinitely rapidly oscillating.

Performing the integration withAx(σ ) before the averaging over the coupling matrix
elements one sees that the integration of the oscillating term gives zero. Therefore, one is
left with

lim
ω→0
Lg(ω) =

∫ 1

0
dτ

∫ ∞
0

dt te−t (κτ+1) = 1

1 +κ
. (46)

Then (42) shows that in accordance with (14):

lim
ω→0

C−[S](ω) = T . (47)

(b) Forω →∞ the same exponential function as in case (a) gives one. The integralAx(σ )
then gives:

Ax(σ ) = 1

π

∫ 1

−1
dx

√
1− x2

1− σx =
1

1 + τ
(48)

and one is left with

lim
ω→∞Lg(ω) =

∫ 1

0
dτ

∫ ∞
0

dt t exp

[
−t − κt

(
τ +

σ 2

1 + τ

)]
=
∫ 1

0
dτ

∫ ∞
0

dt te−t (1+κ) = 1

(1 +κ)2
. (49)

Then (43) shows that

lim
ω→∞C

−[S](ω) = 0. (50)

6. Asymptotic expansion of the correlation function

Using (45) as a starting point,Lg is expanded in an asymptotic series in the parameterλ→∞
[λ = πω/κ ′, κ ′ = κ/(1 + κ)]. It supplies a good approximation when eitherω is large orκ
is small. Note that even for infiniteκ, κ ′ stays finite (approaching one) so that the asymptotic
series can still be used

Lg =
(πω
κ

)2
∫ 1

0
dτ

∫ ∞
0

du ue−λ8(u)

8(u) = u
〈
1− iσκ ′y

∫ uy

0

dρ

ρ
e−iρJ1(σρ)

〉
y

.

(51)

The averaging over the coupling matrix elements in the second line is changed into an averaging
over the random variabley, which represents the normalized square of a coupling matrix
element. The derivative of the function8(u) does not vanish, so a unique inverse of it always
exists. The integral overu, therefore, has the only critical pointu = 0. Using8 as the
new integration variable and performing repeated partial integrations where the exponential
function is integrated and the remaining part differentiated, results in an asymptotic series for
theu-integral [27]:

Lg ∼
(πω
κ

)2
∫ 1

0
dτ e−λ8(u)

∞∑
n=0

1

λn+1

[
1

8′(u)
d

du

]n (
u

8′(u)

) ∣∣∣∣
u=0

=
(πω
κ

)2 ∞∑
n=0

1

λn+1
sn(0) sn(u) =

∫ 1

0
dτ

[
1

8′(u)
d

du

]n
u

8′(u)
. (52)
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In principle any number of coefficientssn(0) can be calculated in a straightforward manner.
But as the complexity of the corresponding expressions rapidly increases, only the first four
are explicitly given. They suffice to describe the lowest-order behaviour of the correlation
functionC−[S](ω) asω→∞.

s0(0) = 0 (53)

s1(0) = 1 (54)

s2(0) = 2iκ ′〈y2〉 (55)

s3(0) = 4κ ′[〈y3〉 − 2κ ′〈y2〉2]. (56)

Inserting the first two coefficients explicitly, one gets

C−[S](ω) ∼ 4

(1 +κ)2

∞∑
n=2

(
κ ′

πω

)n−1

sn(0). (57)

7. Example: constant coupling matrix elements

In this section one example of a Poissonian scattering ensemble is considered. The elements
of its coupling matrix (7) are all fixed to

√
η/N . Only recently have systems with constant

coupling matrix elements been investigated theoretically [13,28]. A physical system with this
property is the rectangular microwave billiard with an antenna placed in its centre, where all
eigenfunctions have either zero or maximal absolute values [20,29].

Before presenting the results, some concepts will be shortly introduced in the following
paragraphs, needed for the discussion below. A detailed description of them can be found
in [20] and will also be published in a forthcoming paper.

Self- and pole-correlations. Starting from (1) and using the eigenbasis ofH , one can
decompose theS-matrix into a sum of resonance terms. Then, the product of twoS-matrices
(and therefore the correlation function itself) can be split into two parts: a single sum of products
of resonance terms with equal indices and a double sum of products of resonance terms with
distinct indices. The average of the first part, will be called ‘self-correlations’ whereas the
average of the second ‘pole-correlations’. Only the pole-correlation term is sensitive to possible
correlations between different resonances. Therefore, one should try to separate it from the
self-correlation term.

Rescaled Breit–Wigner approximation.For sufficiently weak coupling, one can apply first-
order perturbation theory forV in (2). Then, the positions and widths of the resonances
are directly given by the diagonal matrix elements ofH0 andVV †. In this approximation
the ensemble averaging can be easily done. The self-correlation term depends only on the
distribution of the coupling matrix elements, whereas the pole-correlation term additionally
depends on the correlations in the eigenvalues ofH0; consequently, the latter vanishes for
Poissonian ensembles.

But, even for moderate coupling strengths (κ ≈ 0.1), a phenomenological rescaling is
necessary if a good approximation of the correlation function is required. The self- and pole-
correlation terms, obtained in this way, can be identified with analogous results from higher-
order perturbative calculations [30]. For the Poissonian ensemble (only self-correlations), the
rescaled Breit–Wigner approximation of the correlation function is:

C−[S](ω) = T
〈

y2

y − 2iπω
T

〉
y

. (58)
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Note that here the complex conjugate of the usual definition is used (cf the discussion below
(20)). The random variabley represents the normalized square of a coupling matrix element.
In the case of constant coupling matrix elements,y = 1, and the correlation function becomes
a Lorentzian with the width:

0C

d
= T

2π
(59)

which is in perfect agreement with the theory of Ericson fluctuations [31, 32], where0C is
called ‘correlation length’.

Correlation hole. Here, the ‘correlation hole’ serves as a means to detect pole-correlations
in the correlation function (in this sense it is used in connection with the Fourier transform of
correlation functions [8]). It is defined as a minimum in the real part of the correlation function.
Note however, that the appearance of a correlation hole is a sufficient (but not a necessary)
condition for the existence of pole-correlations. The reason is, that the self-correlation term
alone is a strictly decreasing function of 0< ω <∞ for any coupling strength [20].

In the following the correlation function is calculated and discussed for three different
coupling strengths. Figure 2 showsC−[S](ω) for the case of small but still so strong coupling,
so that the beginning of the break-down of the rescaled Breit–Wigner approximation can be
seen. Figure 3 shows the correlation function in the strong coupling case, where the correlation
hole has fully developed. Finally, figure 4 shows the case where the highest-order coefficient
s3(0), (56), of the asymptotic expansion for the real part of the correlation function just vanishes.

Figure 2. C−[S] in the case of constant coupling matrix elements;κ = 0.2. Comparison with the
asymptotic expansion (57) and the rescaled Breit–Wigner approximation (58). Real (diamonds) and
imaginary (crosses) parts of the exact correlation function using (44). In the main plot, the real (full
curve) and imaginary (broken curve) parts of the rescaled Breit–Wigner approximation are shown.
In the inset, the leading terms (n = 2, 3) of the real (full curve) and imaginary (broken curve)
parts of the asymptotic expansion; the dotted curve gives the real part of the rescaled Breit–Wigner
approximation.
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Figure 3. C−[S] in the case of constant coupling matrix elements;κ = 10. Full curve in the main
plot and diamonds in the inset: real part of the exact correlation function using (44); broken curve
in the main plot and crosses in the inset: corresponding imaginary part. Full curve in the inset: real
part (n = 3) of the asymptotic expansion (57); broken curve in the inset: corresponding imaginary
part (n = 2).

In figure 2,C−[S](ω) is shown forκ = 0.2. The coupling strength chosen is just
strong enough, so that the exact correlation function starts to differ significantly from the
rescaled Breit–Wigner approximation (58), which simply gives the real and imaginary part of
a Lorentzian with the width0C/d as given in (59). The deviation from the Lorentzian signals
the beginning of a re-organization process. The resonance poles start to interfere with each
other [24], ‘trying’ to stay orthogonal to each other and at the same time try to align with the
channel vector (finally, this will result in a second-order phase transition as discussed in [25]).

For smallω the difference between the exact and the approximate correlation function is
strongest in the imaginary part ofC−[S](ω) as can be seen in the main plot of figure 2. On the
other hand, for largeω, the difference is strongest in the real part. As demonstrated in the inset
of figure 2, for ImC−[S](ω) the rescaled Breit-Wigner curve perfectly meets the exact one,
whereas for ReC−[S](ω) both curves already differ in the lowest-order expansion coefficient.

Note, that the asymptotic expansion in lowest order is already quite accurate, starting from
ω ≈ 1.

In figure 3 the case of strong couplingκ = 10 is shown. All (except one) resonance poles
are again lying close to the real axis and would, with increasing coupling strength, further
approach it. In principle, again one has well separated Lorentzian shaped resonances, so
that the rescaled Breit–Wigner approximation could be applied. However, this is not feasible
because the closed system to which the effective HamiltonianH (projected on a subspace
perpendicular to the channel vector) converges is different fromH0, and generally has very
different statistical properties. Namely, it exhibits strong pole-correlations.

For largeω there is still a good agreement between the exact and the asymptotic result,
although starting from a somewhat larger valueω > 3 as in the small coupling case. The
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Figure 4. C−[S] in the case of constant coupling matrix elements;κ = 1. Full curve in the main
plot and diamonds in the inset: real part of the exact correlation function using (44); broken curve
in the main plot: corresponding imaginary part. Full curve in the inset: real part (n = 5) of the
asymptotic expansion (57).

appearance of a correlation hole does not affect the validity of the asymptotic expansion; on
the contrary, the correlation hole can be deduced from the fact that the lowest-order expansion
coefficient s3(0) is negative, because the real part of the correlation function then has to
approach theω-axis from below, from which the existence of a minimum follows. As discussed
above this correlation hole proves the existence of pole-correlations.

The correlation hole depicted in figure 3 is well pronounced, and in so far it fits to the
observations made in [6,13–15]. There, it was found that the correlations between theS-matrix
poles increase with the coupling strength until settlement in the strong coupling limit.

From (56) it is found, that a correlation hole is present as soon asκ > 1 (for constant
coupling matrix elements) and asκ > 5 (for Gaussian distributed coupling matrix elements).
In the latter caseκ is five times larger, suggesting a less pronounced correlation hole in the
strong coupling limit.

The relation (56) furthermore shows, that distributions of coupling matrix elements exist,
for which the expansion coefficients3(0) never becomes negative. This would be an even
stronger objection against the formation of a correlation hole. A limiting case, where no
correlations are produced at all is considered in [13,20].

In figure 4 the coupling strength is chosen, such that the lowest-order coefficients3(0) of
the asymptotic expansion of the real part of the correlation function just vanishes. For the case
of constant coupling matrix elements this point is identical to the critical point of maximal
transmission. Then, the real part of the correlation function is of orderω−4, governed by the
coefficients5(0):

s5(0) = 4κ ′(−4 + 55κ ′ − 144κ ′2 + 96κ ′3) (60)

which gives

s5(0) = −1 (61)



2328 T Gorin

at the critical pointκ = 1. This surprising result proves the existence of a correlation hole
already at the critical point (and due to continuity, also in a small neighbourhood around it).
As one can see in the inset of figure 4, the behaviour of ReC−[S](ω) at largeω is indeed
correctly described by the asymptotic expansion, using (61). However, the correlation hole is
very small.

8. Summary

In this paper a non-perturbative method for dealing with Poissonian scattering ensembles has
been developed. It allows one to average analytically over products ofS-matrices. This
is by itself an important achievement, as until now only a few scattering ensembles could
be treated analytically; amongst them the scattering ensembles based on Gaussian random
Hamiltonians. In contrast to the Gaussian ensembles, the Poissonian ensembles should be
used for the statistical description of generically integrable systems.

The comparison of the correlation function for the two types of ensembles, clarifies the role
played by the level-correlations for the correlation properties of the scattering cross section.
For instance, it turns out that the level-correlations are irresponsible for the emergence of
Ericson fluctuations which are solely produced by the self-correlation term. This is discussed
more extensively in [20].

One very interesting feature of the correlation function is a ‘correlation hole’ which may
occur, when the coupling to the decay channels is sufficiently strong. It proves correlations
between different resonances (pole-correlations). In this way, pole-correlations were found
in Poissonian scattering systems, which had been produced by the coupling to the decay
channels. It was further shown that they increase with the coupling strength and finally saturate.
These findings confirm earlier numerical investigations of the correlations betweenS-matrix
poles [14,15]. In the strong coupling limit, one arrives at a new closed system (of dimension
N − 1) with totally different correlation properties. This behaviour should be contrasted to
the GOE case, where the correlation function is invariant under the transformationκ → κ−1.
In the weak as well as in the strong coupling limit, the correlation function reflects the same
level-correlations of the GOE-type, whereas, with increasing transmission, the correlations get
washed out.

In the case of constant coupling matrix elements, it could be demonstrated, that pole
correlations appear even before the critical point is reached. Even though the correlation
hole was found to be extremely small, this is an important result in view of more principle
questions. First of all one could have thought of finding some signature of the critical point
in the correlation function, which is apparently not the case. Second, it is doubtful whether
one can find physical systems with an external parameter to drive them across the critical
point. Then, one could have argued, that correlations can be induced only when the coupling
is passing its physical limits (the critical point), so that the statement ‘the coupling produces
correlations’ was irrelevant.

In order to test the results presented in this paper, on a real physical system, one could
follow two lines: (a) one could perform an appropriate experiment, similar to [2], with
a superconducting rectangular microwave billiard, recording the reflection spectrum and
analysing the correlations within; (b) alternatively one could conduct a numerical analysis.
Then a two-dimensional rectangular microwave billiard coupled to a coplanar waveguide
would probably be more appropriate. Studies on such a system (although at first with different
interests) have recently started [33].
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Appendix A. A special kind of the exponential integral

For the integration of the first integrand of (34) an anti-derivative ofx−2eix is needed, which
should be analytic at infinity. This is accomplished by the following definition

Ẽ2(z) =
∫ ∞
z

du
eiu

u2
= eiz

z
+ iE1(−iz) |arg(−iz)| < π. (62)

The integration path may not cross the negative real axis including the origin.E1 is the
exponential integral according to [26]. For asymptotically small real argumentsx, one gets

Ẽ2(x) = 1

x
+ i[1 − γ − ln(−ix)] + O(x)

= 1

x
+ i

[
1− γ − ln |x| + iπ

2
sgn(x)

]
+ O(x). (63)

γ is Euler’s constant.

Appendix B. Simplification of c−0 (v)

Both integrals in (37) will be transformed in such a way that each of the radicands will become
x2 − 1. So in the first integral the transformation reads:u = (σx + 1)/2 and in the second
integral: u = (σx − 1)/2. Due to the transformations both integration intervals are mapped
onto the interval:(−1, 1). A further transformationx → −x in the second integral allows
one to combine both integrals into a single one:

c−0 (v) =
ωpτ

2
[π + Ẽ2(pu1)− Ẽ2(pu2)] + F(p, τ)

F (p, τ) = −ωσe−ip/2
∫ ∞

1

dx√
1− x2

{
τ
√
x2 − 1− x − σ
(σx + 1)2

e−iβx +
τ
√
x2 − 1− x + σ

(σx − 1)2
eiβx

}
(64)

whereβ = pσ/2. Discarding the exponentials, each of the two terms can be integrated as a
indefinite integral, using standard techniques [34]. Note that both terms in the curly brackets
differ only in the sign in front of the parameterσ . Considering both cases as anti-derivatives
one gets ∫ x

ds
τ
√
s2 − 1− (s ± σ)√
s2 − 1(σ s ± 1)2

= 2

1 + τ

(
x +

√
x2 − 1± q

)−1
(65)

whereq = s/r. With this result, one can integrate partially inF , and arrive at

F(p, τ) = 2ωσ

1 + τ
e−ip/2

{
e−iβ

1 +q
+

eiβ

1− q + iβA

}
(66)

A =
∫ ∞

1
dx

(
eiβx

x +
√
x2 − 1− q −

e−iβx

x +
√
x2 − 1 +q

)
. (67)
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After the substitutionu = −x − √x2 − 1 in the first integrand andu = x +
√
x2 − 1 in the

second, one can recombine the integrals into one:

A =
[ ∫ −1

−∞
+
∫ ∞

1

]
du

u− u−1

2u(u− q)e
iβ(u+u−1)/2. (68)

The integration intervals form a part of a closed path in the complex plane, consisting of the
interval(−∞,−1), the upper half unit circle from−1 to 1, the interval(1,∞), and the upper
half circle from∞ to−∞. The integrand is analytic in the region enclosed by this path, and
the integral over the semicircle with ‘infinite’ radius gives zero. Therefore one gets

A = −
∫ π

0
dφ

sinφeiβ cosφ

eiφ − q = −
∫ 1

−1

dx eiβx

x − q + i
√

1− x2
= σ

2q
(A1 + iA2) (69)

A1 =
∫ 1

−1
dx eiβx q − x

1− σx =
2 sinβ

σβ
+
τ

σ 2
eip/2

{
E1

[
ip

2
(1 +σ)

]
− E1

[
ip

2
(1− σ)

]}
(70)

A2 =
∫ 1

−1
dx eiβx

√
1− x2

1− σx . (71)

Inserting the results forA1 (70), forF(p, τ) (66) into the starting expression forc−0 (v) (64)
one gets

c−0 = πωpτ/2 +ωe−ip/2

[
τeiβ

1− σ −
τe−iβ

1 +σ
− 2σ

1 + τ

(
e−iβ

1 +q
+

eiβ

1− q +
i sinβ

q

)]
−
[
iωpτ/2− 2ωσ

1 + τ

iβτ

2qσ

]{
E1

[
ip

2
(1 +σ)

]
− E1

[
ip

2
(1− σ)

]}
− 2ωσ

1 + τ

βσ

2q
e−ip/2A2. (72)

Replacing the parametersp, τ, σ , andq by their definitions (25) and (26) as functions
depending onr ands, it turns out, that the expressions in both square brackets vanish.

c−0 =
κ̃

2
|r2 − s2| + κ̃ 2r2s2

r2 + s2
Ax(σ )e−ip(1−σx)/2 (73)

Ax(σ ) = 1

π

∫ 1

−1
dx

√
1− x2

1− σx . (74)

Appendix C. Simplified expressions for the integralLg

First representation. In order to calculate the correlation functionC−[S](ω) one needs the
integralLg as it is given due to the relations (38), (40) and (41). Using the abbreviation
R2 = r2 + s2, and the parametersσ , τ , andκ as defined in (25) and (26) one finds

Lg =
∞∫ ∫
0

dr ds rs exp

[
−R

2

2
(1 +κ|τ | + σ 2Ax(σ )〈κ̃e−ip(1−σx)/2〉v)

]
. (75)

This expression can be simplified further by introducing spherical coordinates:r = R cosφ,
s = R sinφ. Then it holds:

r2 + s2 = R2 σ = 2 cosφ sinφ = sin 2φ τ = cos2 φ − sin2 φ = cos 2φ. (76)

Becausers = R2σ/2 andp = R2κ̃/(πω) the transition to the new coordinates is easily
accomplished. The integral operatorL alone, now reads:

L = 1
2

∫ ∞
0

dRR3e−R
2/2
∫ π/2

0
dφ sin 2φ = 1

2

∫ ∞
0

dt te−t
∫ π

0
dθ sinθ (77)
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with θ = 2φ andt = R2/2. Becauseg(r, s) is symmetric with respect to the transformation
θ → π − θ , one can restrict the integration to the half of the original integration interval,
namely to(0, π/2). There a further substitutionθ = cosφ is applied. Finallyκ̃ is replaced
by κy due to the relation (25).y is a random variable for the normalized square of a coupling
matrix element, which coincides in the weak coupling limit with the normalized width of the
resonances. We then get the first of the two representations ofLg which are used in sections
5 and 8:

Lg =
∫ 1

0
dτ

∫ ∞
0

dt t exp[−t − κt (τ + σ 2Ax(σ )〈ye−it κy
πω
(1−σx)〉y)]. (78)

Second representation.A second representation ofLg can be found by rewriting the integral

Ax(σ )e−ip(1−σx)/2 = 1

π

∫ 1

−1
dx
√

1− x2
e−ip(1−σx)/2

1− σx . (79)

The latter part of the integrand can be expressed by the following indefinite integral:

f (p) = e−ip(1−σx)/2

1− σx = i

2

∫ −i∞

p

dρ e−iρ(1−σx)/2. (80)

Insertingf (p) into (79) and exchanging the order of integrations leads to

Ax(σ )e−ip(1−σx)/2 = i

2

∫ −i∞

p

dρ e−iρ/2 1

π

∫ 1

−1
dx
√

1− x2e−iσρx/2. (81)

Thex-integral is a representation of the Bessel function of the first kind, as can be realized
after the substitutionx = cosφ and subsequent partial integration [26]

1

π

∫ 1

−1
dx
√

1− x2e−iσρx/2 = 2i

πσρ

∫ π/2

−π/2
dφ sinφe−iσρ sinφ/2 = 2

σρ
J1(σρ/2). (82)

Therefore, we finally have

Ax(σ )e−ip(1−σx)/2 = i

σ

∫ −i∞

p/2

dρ

ρ
e−iρJ1(σρ). (83)

As forp = 0, we haveσ 2Ax(σ ) = 1− τ (cf (48)) one can split the integration path to get

iσ
∫ −i∞

p/2

dρ

ρ
e−iρJ1(σρ) = iσ

[ ∫ −i∞

0
−
∫ p/2

0

]
dρ

ρ
e−iρJ1(σρ)

= (1− τ)− iσ
∫ p/2

0

dρ

ρ
e−iρJ1(σρ). (84)

Inserting this expression in (78) and using the substitutionu = κt/(πω) finally gives

Lg =
(πω
κ

)2
∫ 1

0
dτ

∫ ∞
0

du uexp

[
− λu

〈
1− iσκ ′y

∫ uy

0

dρ

ρ
e−iρJ1(σρ)

〉
y

]
. (85)

Here the additional parametersλ = πω/κ ′ andκ ′ = κ/(1 +κ) are introduced.
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[34] Bronstein I N and Semendjajew K A 1987Taschenbuch der Mathematiked B G Teubner (Leipzig)


